

Fatigue Training for Auditors

Matthew A. Adler, PhD Laboratory Testing Inc. Senior Manager, Fatigue & Fracture

20 - 21 October 2019

Agenda

- •Fatigue Properties
- Reason for Testing
- •The Different Types of Fatigue
- Specifications for Fatigue Tests
- •Equipment for Fatigue Tests
- Specimens for Fatigue Tests
- Auditing Fatigue Tests

This material cannot be copied or distributed without written consent from LTI.

Fatigue Properties

The main properties obtained are:

Fatigue Life
Fatigue Crack Growth Rate
Threshold Fatigue Crack Growth Stress Intensity Factor Range

Reason for Testing

• Aloha Airlines Flight 243 (1988)

• Liberty ships (1941 – 1945)

Reason for Testing

1. Integrity

How large of a crack can you tolerate? (Fracture Toughness)

2. <u>Durability</u>

How long will it take? (Fatigue & Fatigue Crack Growth)

3. Confidence

How sure are you? (Testing & Statistics)

4. <u>Cost</u> Will your company profit?

Types of Fatigue: High Cycle Fatigue (HCF), Code O

- Failure that occurs in structures subjected to alternating stresses.
- Failure may occur at a stress level considerably lower than the tensile or yield strength for a static load.
- Usually occurs after a lengthy period of repeated stress cycling.
- Tests are performed in load control.
- Cycles to failure typically in the 1E7 to 1E8 range.
- Simplest of the fatigue test types.

Types of Fatigue: Low Cycle Fatigue (LCF), Code Y

- Tests are performed in strain control.
- Cycles to failure typically in the 1E3 to 1E4 range.
- Tests are typically at elevated temperature.

Types of Fatigue: Crack Propagation (FCGR), Code XE

- ∆K is the driving force for fatigue crack growth
- Arbitrary regions I, II, and III can be defined
 - Threshold (Region I) and upper end (Region II, III) are separate segments.
- The blue arrows in the graph depict the direction test data is measured

Types of Fatigue: Crack Propagation (FCGR), Code XE

- Region I: threshold (asymptote)
 - ΔK_{th} is crack growth threshold
- Region II: Paris Regime:
 - $\frac{da}{dN} = \mathbf{C}(\Delta \mathbf{K})^n$

n = slope

Linear

Region III: instability,
 K_{max} → K_{IC} (asymptote)

C = intercept

Load Ratio Effects

- Load Ratio R = P_{max} / P_{min} or R = K_{min} / K_{max}
- Higher load ratio data is generally shifted up and to the left.
- M(T) and C(T) data is in good agreement at both load ratios.

Load Ratio Effects

- The spread in data with R cannot be easily modeled and is not well understood (must be tested.)
- Always need to know R when performing FCGR test.

Crack Length Monitoring

- Two primary methods of measuring crack length are allowed by ASTM E647 and used:
 - Potential Difference (PD)
 - Compliance
- PD passes a current through the specimen and correlates the increase in voltage as measured across the crack to crack length.
- Compliance is the inverse of stiffness closed-form equations are used to relate the increase in compliance with crack length for known specimen geometries.

Potential Difference (PD)

 Constant current is passed through the specimen, and voltage (PD) is monitored across the crack as the crack grows.

Johnson's Equation
$$V = \cosh^{-1} \left(\frac{\cosh(\pi y/2W)}{\cos(\pi a/2W)} \right)$$

• Provides the relationship between voltage and crack length (calibration).

Potential Difference (PD)

• If current input is excessive or variable, specimen heating can occur.

AC7101/3 Rev D § 12.12

 A stability test determines the amount of drift in the PD signal as a function of time, and whether this is acceptable.

Compliance

• Clip gage is inserted between knife edges and measures crack mouth opening displacement (COD).

Types of Fatigue: Crack Propagation (FCGR), Code XE

- 3 separate loading modes
- Mode I is most dominant in practice.
- Cracks that start in Mode II and mode III often turn and grow in Mode I: exception is weak interfaces.
- Testing according to ASTM E647 is applicable to Mode I.

Specifications for Testing

- HCF: The mostly widely used specification is ASTM E466
- LCF: The mostly widely used specification is ASTM E606
- FCGR: The mostly widely used specification is ASTM E647

Topics Covered By ASTM E466, E606, E647

- Apparatus (Equipment)
- Test Specimens
- Procedures for Testing
- Reporting
- Interpretation of the Results

Equipment for HCF Testing

Equipment for LCF Testing

Equipment for FCGR Testing

Testing Machines

Testing Machines

idcap

Typical HCF Specimens

Nadcap

Typical LCF Specimens

Typical FCGR Specimens

C(T) specimens are the most common.

Other common geometries include: M(T) SEN(T), Kb Bar

Typical FCGR Specimens

HCF, LCF, FCGR Testing Specimen Preparation

- Refer to Nadcap MTL checklist AC 7101/7
 - The objective of specimen preparation is to eliminate any effects of specimen preparation on the properties resulting from the test:
 - Absence of distortion of specimen dimensions
 - Absence of physical damage (e.g. cracks, tears, scratches)
 - Absence of residual stresses (tensile or compressive)
 - Absence of metallurgical damage (e.g. local overheating from abusive grinding or machining)
 - Inspection / acceptance of specimens
 - Each specimen is dimensionally inspected prior to forwarding to the testing laboratory.
 - Specimen preparation and equipment consistency is emphasized; fatigue results can have scatter

Auditing HCF Testing

- Failure in threads is possible not necessarily a test lab issue.
- Alignment is critical for HCF testing (should be verified).
- Specimen heating should be measured.
- Specimens may be low stress ground and polished (AC7101/7).
- Specimens should be inspected for scratches or defects prior to testing.

Auditing HCF Testing

- Surface irregularities recorded prior to test.
- Irregularities usually recorded on test cert (not required in § 8.12)

Auditing LCF Testing

- Failure in threads is possible not necessarily a test lab issue.
- Alignment is critical for LCF testing (should be verified).
- Much lower frequencies specimen heating not typically an issue.
- Specimens may be low stress ground and polished.
- Specimens should be inspected for scratches or defects prior to testing.
- Noise from extensometers and other equipment a possible issue.

Auditing FCGR Testing

Auditing FCGR Testing

Auditing FCGR Testing

•

Note 1—Dimensions are in millimeters (inches). A-surfaces shall be perpendicular and parallel as applicable to within \pm

0.05 mm (0.002 in.) TIR.

Surface finish of holes and loading pins shall be 0.8 (32) or better.

FIG. A1.2 Clevis and Pin Assembly for Gripping C(T) Specimens

- Clevises for FCGR tests per ASTM E647 show specific tolerances on the clevis hole and pin diameter.
 - These dimensions are critical for linearity of the load-displacement signal but are rarely audited.

Auditing FCGR Testing

- Cracks are measured after test completion to posttest correct analysis.
- Corrects the error between the measured crack and actual crack lengths and crack curvature.

Auditing FCGR Testing

- Anti-buckling guides are often used when testing thin M(T) specimens.
- These thin specimens are often loaded in tension-compression, which can cause buckling.
- These plates add stiffness to the structure and prevent buckling.

Summary

- Fatigue tests covered by AC7101/3 include: LCF, HCF, and FCGR.
- Common specimens were covered for each test type.
- Basic setup discussed for each test type.
- Testing issues identified for each test type.

QUESTIONS?

THANK YOU.

Matthew A. Adler PhD Senior Manager, Fracture Mechanics <u>madler@labtesting.com</u> 215.997.9080, Ext 2168

Laboratory Testing Inc. (LTI) <u>www.labtesting.com</u>

- Full-service materials testing
- Hatfield, PA
- 102,000 sq. ft.
- 180 employees
- 2,000+ active customers
- 73,000 certifications
- 3rd Generation family owned
- President/CEO: Mike McVaugh
- Machining, Mechanical, Fatigue, Fracture, Metallography, Chemistry, Metrology, NDT, <u>FTA Systems</u>, <u>TacTic</u>
- A2LA 17025 and Nadcap Accredited!

